
Interactive Formal Verification
3: Elementary Proof

Tjark Weber
(Slides: Lawrence C Paulson)

Computer Laboratory
University of Cambridge

Goals and Subgoals

Goals and Subgoals

• We start with one subgoal: the statement to be
proved.

Goals and Subgoals

• We start with one subgoal: the statement to be
proved.

• Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

Goals and Subgoals

• We start with one subgoal: the statement to be
proved.

• Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

• Certain methods, notably auto and simp_all,
operate on all outstanding subgoals.

Goals and Subgoals

• We start with one subgoal: the statement to be
proved.

• Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

• Certain methods, notably auto and simp_all,
operate on all outstanding subgoals.

• We finish when no subgoals remain.

Structure of a Subgoal

Structure of a Subgoal

assumptions (two
induction hypotheses)

Structure of a Subgoal

assumptions (two
induction hypotheses)

parameters (arbitrary
local variables)

Structure of a Subgoal

assumptions (two
induction hypotheses)

conclusion

parameters (arbitrary
local variables)

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

induction hyp

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))

rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

Proof by Rewriting
app (Cons x xs) ys = Cons x (app xs ys)
 rev (Cons x xs) = app (rev xs) (Cons x Nil)
 rev (app xs ys) = app (rev ys) (rev xs)
app (app xs ys) zs = app xs (app ys zs)

recursive defns

lemma

induction hyp

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

introduces a case split
on the sign of c

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

• Logical equivalencies are just boolean equations.

introduces a case split
on the sign of c

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

• Logical equivalencies are just boolean equations.

• They lead to a clear and simple proof style.

introduces a case split
on the sign of c

Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

• Logical equivalencies are just boolean equations.

• They lead to a clear and simple proof style.

• They can also be written with the syntax P ↔ Q.

introduces a case split
on the sign of c

Automatic Case Splitting

Automatic Case Splitting

Simplification will replace

Automatic Case Splitting

Simplification will replace

P(if b then x else y)

Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

(b ➝ P(x)) ∧ (¬b ➝ P(y))

Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

(b ➝ P(x)) ∧ (¬b ➝ P(y))

• By default, this only happens when simplifying the
conclusion.

Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

(b ➝ P(x)) ∧ (¬b ➝ P(y))

• By default, this only happens when simplifying the
conclusion.

• Other case splitting can be enabled.

Conditional Rewrite Rules

xs ≠ [] ⇒ hd (xs @ ys) = hd xs

n ≤ m ⇒ (Suc m) - n = Suc (m - n)

[|a ≠ 0; b ≠ 0|] ⇒ b / (a*b) = 1 / a

Conditional Rewrite Rules

xs ≠ [] ⇒ hd (xs @ ys) = hd xs

n ≤ m ⇒ (Suc m) - n = Suc (m - n)

[|a ≠ 0; b ≠ 0|] ⇒ b / (a*b) = 1 / a

• First match the left-hand side, then recursively
prove the conditions by simplification.

Conditional Rewrite Rules

xs ≠ [] ⇒ hd (xs @ ys) = hd xs

n ≤ m ⇒ (Suc m) - n = Suc (m - n)

[|a ≠ 0; b ≠ 0|] ⇒ b / (a*b) = 1 / a

• First match the left-hand side, then recursively
prove the conditions by simplification.

• If successful, applying the resulting rewrite rule.

Conditional Rewrite Rules

xs ≠ [] ⇒ hd (xs @ ys) = hd xs

n ≤ m ⇒ (Suc m) - n = Suc (m - n)

[|a ≠ 0; b ≠ 0|] ⇒ b / (a*b) = 1 / a

• First match the left-hand side, then recursively
prove the conditions by simplification.

• If successful, applying the resulting rewrite rule.

Termination Issues

Termination Issues

• Looping: f(x) = h(g(x)), g(x) = f(x+2)

Termination Issues

• Looping: f(x) = h(g(x)), g(x) = f(x+2)

• Looping: P(x) ⇒ x=0

• simp will try to use this rule to simplify its own
precondition!

Termination Issues

• Looping: f(x) = h(g(x)), g(x) = f(x+2)

• Looping: P(x) ⇒ x=0

• simp will try to use this rule to simplify its own
precondition!

• x+y = y+x is actually okay!

• Permutative rewrite rules are applied but only if
they make the term “lexicographically smaller”.

The Methods simp and auto

The Methods simp and auto

• simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

The Methods simp and auto

• simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first.

The Methods simp and auto

• simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first.

• auto also applies all obvious logical steps

• Splitting conjunctive goals and disjunctive
assumptions

• Performing obvious quantifier removal

Variations on simp and auto

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

omitting a certain rule

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

omitting a certain rule

not simplifying the
assumptions

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

omitting a certain rule

ignoring all assumptions

not simplifying the
assumptions

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

omitting a certain rule

ignoring all assumptions

not simplifying the
assumptions

do simp for all subgoals

Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ...

auto simp add: ... del: ...

using another rewrite rule

omitting a certain rule

ignoring all assumptions

not simplifying the
assumptions

do simp for all subgoals
auto with options

Rules for Arithmetic

Rules for Arithmetic

• An identifier can denote a list of lemmas.

Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative
properties of addition and multiplication

Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative
properties of addition and multiplication

• algebra_simps: useful for multiplying out
polynomials

Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative
properties of addition and multiplication

• algebra_simps: useful for multiplying out
polynomials

• field_simps: useful for multiplying out the
denominators when proving inequalities

Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative
properties of addition and multiplication

• algebra_simps: useful for multiplying out
polynomials

• field_simps: useful for multiplying out the
denominators when proving inequalities

 Example: auto simp add: field_simps

Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative
properties of addition and multiplication

• algebra_simps: useful for multiplying out
polynomials

• field_simps: useful for multiplying out the
denominators when proving inequalities

 Example: auto simp add: field_simps

• thm name prints theorems.

Simple Proof by Induction

Simple Proof by Induction

• State the desired theorem using “lemma”, with its
name and optionally [simp]

Simple Proof by Induction

• State the desired theorem using “lemma”, with its
name and optionally [simp]

• Identify the induction variable

• Its type should be some datatype (incl. nat)

• It should appear as the argument of a recursive
function.

Simple Proof by Induction

• State the desired theorem using “lemma”, with its
name and optionally [simp]

• Identify the induction variable

• Its type should be some datatype (incl. nat)

• It should appear as the argument of a recursive
function.

• Complicating issues include unusual recursions and
auxiliary variables.

Completing the Proof

Completing the Proof

• Apply “induct” with the chosen variable.

Completing the Proof

• Apply “induct” with the chosen variable.

• The first subgoal will be the base case, and it
should be trivial using “simp”.

Completing the Proof

• Apply “induct” with the chosen variable.

• The first subgoal will be the base case, and it
should be trivial using “simp”.

• Other subgoals will involve induction hypotheses
and the proof of each may require several steps.

Completing the Proof

• Apply “induct” with the chosen variable.

• The first subgoal will be the base case, and it
should be trivial using “simp”.

• Other subgoals will involve induction hypotheses
and the proof of each may require several steps.

• Naturally, the first thing to try is “auto”, but much
more is possible.

Basics of Proof General

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

• Moving forward executes Isabelle commands; the
processed text turns blue.

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

• Moving forward executes Isabelle commands; the
processed text turns blue.

• Moving backward undoes those commands.

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

• Moving forward executes Isabelle commands; the
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also go to
start, or go to an arbitrary point in the file.

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

• Moving forward executes Isabelle commands; the
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also go to
start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue (processed)
region.

Basics of Proof General

• You create or visit an Isabelle theory file within the text
editor, Emacs.

• Moving forward executes Isabelle commands; the
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also go to
start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue (processed)
region.

• (A different user interface: isabelle jedit)

Proof General Tools

Proof General Tools
forward and back

Proof General Tools
forward and back find theorems

Proof General Tools
forward and back find theorems query theorem

Proof General Tools
forward and back find theorems

stop!!

query theorem

