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Goals and Subgoals

• We start with one subgoal: the statement to be 
proved.

• Proof tactics and methods typically replace a single 
subgoal by zero or more new subgoals.

• Certain methods, notably auto and simp_all, 
operate on all outstanding subgoals.

• We finish when no subgoals remain.
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assumptions (two 
induction hypotheses)

conclusion

parameters (arbitrary 
local variables)
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Rewriting with Equivalences

(x dvd -y) = (x dvd y)
(a * b = 0) = (a = 0 ∨ b = 0)
(A - B ⊆ C) = (A ⊆ B ∪ C)
(a*c ≤ b*c) = ((0<c ➝ a≤b) ∧ (c<0 ➝ b≤a))

• Logical equivalencies are just boolean equations.

• They lead to a clear and simple proof style.

• They can also be written with the syntax P ↔ Q.

introduces a case split 
on the sign of c
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Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

(b ➝ P(x)) ∧ (¬b ➝ P(y))

• By default, this only happens when simplifying the 
conclusion.

• Other case splitting can be enabled.
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Termination Issues

• Looping: f(x) = h(g(x)),  g(x) = f(x+2)

• Looping: P(x) ⇒ x=0

• simp will try to use this rule to simplify its own 
precondition!

• x+y = y+x  is actually okay!

• Permutative rewrite rules are applied but only if 
they make the term “lexicographically smaller”.
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The Methods simp and auto 

• simp performs rewriting (along with simple 
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first. 

• auto also applies all obvious logical steps

• Splitting conjunctive goals and disjunctive 
assumptions

• Performing obvious quantifier removal
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Variations on simp and auto

simp add: add_assoc

simp del: rev_rev (no_asm_simp)

simp (no_asm)

simp_all (no_asm_simp) add: ... del: ... 

auto simp add: ... del: ... 

using another rewrite rule

omitting a certain rule

ignoring all assumptions

not simplifying the 
assumptions

do simp for all subgoals
auto with options
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Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative 
properties of addition and multiplication

• algebra_simps: useful for multiplying out 
polynomials

• field_simps: useful for multiplying out the 
denominators when proving inequalities

 Example:  auto simp add: field_simps

• thm name   prints theorems.
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Simple Proof by Induction

• State the desired theorem using “lemma”, with its 
name and optionally [simp]

• Identify the induction variable

• Its type should be some datatype (incl. nat)

• It should appear as the argument of a recursive 
function.

• Complicating issues include unusual recursions and 
auxiliary variables.
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Completing the Proof

• Apply “induct” with the chosen variable.

• The first subgoal will be the base case, and it 
should be trivial using “simp”.

• Other subgoals will involve induction hypotheses 
and the proof of each may require several steps.

• Naturally, the first thing to try is “auto”, but much 
more is possible.
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Basics of Proof General

• You create or visit an Isabelle theory file within the text 
editor, Emacs.

• Moving forward executes Isabelle commands; the 
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also go to 
start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue (processed) 
region.

• (A different user interface:  isabelle jedit)
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Proof General Tools
forward and back find theorems

stop!!

query theorem


